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Abstract
We review the methods that we recently developed for making large-scale electronic structure
calculations, both using one-electron theory and using many-electron theory. The methods are
based on the density matrix representation, together with the Wannier state representation and
the Krylov subspace method, using one-electron theory of systems on a scale of a few tens of
nanometers. The hybrid method of quantum mechanical molecular dynamical simulation is
explained. The Krylov subspace method, the CG (conjugate gradient) method and the shifted
COCG (conjugate orthogonal conjugate gradient) method can be applied in the investigation of
the ground state and the excitation spectra using many-electron theory. The mathematical
foundation of the Krylov subspace method for large-scale matrix computation is focused on,
and the key techniques of the shifted COCG method, i.e. using the collinear residual and
‘seed-switching’, are explained. A wide variety of applications of the extended novel algorithm
are also explained. These include studies of fracture formation and propagation, liquid carbon,
and formation processes of gold nanowires, together with the application to the extended
Hubbard model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Large-scale matrix computation is crucial in electronic
structure theory, both for one-electron theory for large-scale
systems and for many-body theory for strongly interacting
electron systems. The interplay of the electronic structure
and nanoscale atomic structure plays an essential role in
physical properties of nanostructure materials and the order-
N algorithm has been extensively investigated. The size of the
Hilbert space grows exponentially with linear increase of the
system size in many-electron problems.

Ten very important algorithms were invented in the 20th
century [1, 2]. These algorithms are the Krylov subspace
method, the QR algorithm, the Householder algorithm, the fast
Fourier transformation (FFT) etc; most of them involve matrix
algebra and an order-N algorithm. The FFT algorithm is one of
the bases of the local density approximation (LDA) for density
functional theory (DFT), and the Lanczos method, one of the

Krylov subspace methods, is one of the bases for many-body
electron theory. The efficiency of the modern Krylov subspace
method seems not to be widely known in the field of electron
theory, both for LDA and for many-electron theory.

For one-electron theory or DFT, the most important states
are the states near the Fermi energy or the band gap. Then
the standard mathematical tool is the diagonalization of the
Hamiltonian matrix. This may be a serious difficulty for large-
scale systems. For many-electron theory, the difficulty is the
huge size of the Hamiltonian matrix and the resultant memory
size and computational time. These are exactly the targets of
the field of large-scale matrix computation mentioned above.

In this paper, we report our recent activity in (1) devel-
oping a quantum mechanical molecular dynamical (MD) sim-
ulation method with exact diagonalization, the Wannier states
representation and the Krylov subspace method for nanoscale
systems up to a few tens of nm in size and (2) the investigation
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of the many-electron problem, i.e. the degenerate orbital ex-
tended Hubbard Hamiltonian of size 6.4×107, with the Krylov
subspace method. We explain the key aspects in one-electron
theory for a large-scale system and the many-electron theory in
section 2. Section 3 is devoted to the explanation of the Krylov
subspace methods. Several applications are reviewed in sec-
tion 4 and a summary is given in section 5.

2. One-electron theory versus many-electron theory

2.1. One-electron spectra of large-scale systems

2.1.1. Density matrix formulation. The LDA calculation is
based on variational principles and usually on eigenfunction
representation of the ground state. However, the eigenfunc-
tions are not always necessary in actual calculations nor useful
in numerical investigation of large-scale systems. Instead, one
can construct the formulation with the one-body density ma-
trix [3]. Any physical property can be represented using the
density matrix ρ as

〈X̂ 〉 = Tr [ρ X̂] =
∑

i j

ρi j X̂ i j , (1)

where X̂ is an operator for the physical property X and i and j
denote atomic sites and orbitals. The energy and forces acting
on an individual atom can be calculated by replacing X̂ by the
Hamiltonian or its derivative. Therefore, one needs only (i, j)
elements of the density matrix ρ corresponding to non-zero Xi j

but not all elements. The density matrix ρi j is given as

ρ =
(occ)∑

α

|φα〉〈φα|, (2)

where |φα〉 are the eigenstates or the Wannier states and the
summation is restricted to within the occupied states. It can
also be written as

ρi j = − 1

π

∫ +∞

−∞
dε Im Gi j(ε) f

(
ε − μ

kBT

)
, (3)

where Gi j is the Green’s function defined as

Gi j(ε) = [(ε + iδ − Ĥ )−1]i j . (4)

Here, μ, kB, T and f are the chemical potential, the Boltzmann
constant, the temperature and the Fermi–Dirac distribution
function, respectively.

We have developed a set of computational methods for
electronic structure calculations, i.e. the generalized Wannier
state method [4–6], the Krylov subspace method (the subspace
diagonalization method [7] and the shifted COCG method [8])
and the generalized Wannier state solver with parallelism [9].
These methods are ones for calculating the one-body density
matrix and/or the Green’s function for a given Hamiltonian.
Calculation was carried out using the tight-binding formalism
of the Hamiltonian. These methods can be used in a hybrid
way as is explained in section 2.1.5 [10].

2.1.2. Wannier state representation. The order-N algorithm
can be constructed for semiconductors and insulators on the
basis of the Wannier state representation. The generalized
Wannier states are localized wavefunctions in condensed
matter obtained by the unitary transformation of occupied
eigenstates [11, 12, 4], and also obtained in an iterative way,
starting from a trial localized wavefunctions, with a mapped
eigenvalue equation [4]

H (i)
WS|φ(WS)

i 〉 = ε
(i)
WS|φ(WS)

i 〉, (5)

where
H (i)

WS ≡ H + 2ηsρ̄i − H ρ̄i − ρ̄i H (6)

ρ̄i ≡ ρ − |φ(WS)
i 〉〈φ(WS)

i | =
occ∑

j ( �=i)

|φ(WS)
j 〉〈φ(WS)

j |, (7)

and the energy parameter ηs should be much larger than the
highest occupied level. Once one obtains the Wannier states,
the density matrix can be easily constructed from equation (2)
and the force acting on each atom can be calculated. We
observed that the bond forming and breaking processes in the
localized Wannier states are well described as changes between
a bonding and a non-bonding orbital. The Wannier states
depend upon the local environment and the above iterative
procedure is suitable for MD simulation.

2.1.3. The Krylov subspace method. For metallic systems,
the Krylov subspace method is very useful for achieving
computational efficiency (accuracy and speed) [7, 8]. The
Green’s function can be calculated in the Krylov subspace and
one calculates the density matrix using equation (3). Details
are explained in section 3. The Krylov subspace method is, of
course, applicable to semiconductors and insulators, too.

2.1.4. Comparison among solver methods and order-N
character. Figure 1 demonstrates our methods for 102–
107 atoms with and without parallel computation [5, 6, 10],
where the computational time is shown for the standard
eigenstate solver (EIG) and the solver methods that we
developed: the Wannier state solver with variational procedure
(WS-VR), the Wannier state solver with perturbation
procedure (WS-PT) and the Krylov subspace solver with
subspace diagonalization (KR-SD). Parallel computations are
achieved by the Open MP technique (http://www.openmp.org).
The Hamiltonian forms used here are the Slater–Koster form
ones for silicon [13] and carbon [14], and we use the linear
muffin-tin orbital (LMTO) theory [15] in the form for the
first order (H (1)) for copper. For the data in figure 1, except
those from the eigenstate solver, the computational cost is
‘order N’ or linearly proportional to the system size (N), up
to ten million atoms, and shows a satisfactory performance
in parallel computation. The computational performance of
the Wannier state methods can be faster, at best by several
hundred times, than that of the Krylov subspace method (see
figure 1, for example), particularly if a dominant part of the
wavefunctions are well localized. Now the program package
(ELSES: extra-large-scale electronic structure calculation) is
being prepared [16].
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Figure 1. The computational time as a function of the number of
atoms (N) [5, 6, 10]. The time was measured for metallic (fcc Cu
and liquid C) and insulating (bulk Si) systems with up to 11 315 021
atoms, using conventional eigenstate calculation (EIG) and using our
methods for large systems: the KR-SD, WS-VR and WS-PT
methods. See the original papers [5, 6, 10] for the details of the
parallel computation.

2.1.5. The multiple-solver method. Since our method is based
on the density matrix formulation, we can construct another
very important method ‘the multiple-solver method’. The basic
idea is a division of the Hilbert space:

ρ = ρA + ρb, ρAρB = 0, (8)

and the calculation can be done independently on the different
parts A and B. The importance of this is that this hybrid method
is completely within the quantum mechanical framework.
Then we can use this hybrid scheme as the multiple-solver
method for nanoscale systems and the calculated results do not
cause any artificial discontinuity of physical quantities which
can always occur in the hybrid scheme based on naive simple
division of the physical space. The choice or hybrid of the
solvers is important for an optimal calculation with a proper
balance between accuracy and computational cost [5, 10].

2.2. The ground state of many-electron theory and excitation
spectra

In many-electron theory, we usually treat large matrices and
the calculation becomes more and more difficult, since the
occupation freedom of one site grows exponentially and the
matrix size is extraordinarily large [17]. In order to get
the precise eigenenergy and eigenvector of the ground state,
one should use the Lanczos method and the CG method
(the inverse iteration method) simultaneously. The Lanczos
method is useful for getting the approximate eigenenergy and
eigenvectors of the ground state. However, the orthogonality
of the basis vectors generated is broken at low iteration steps
and the precision of the ground state energy and wavefunction
could not be preserved. Then we use the CG method (the
inverse iteration method) to improve them. After estimating the
accuracy of the calculation (the norm of the residual vector),
we should repeat this procedure until enough accuracy is
obtained.

After we obtain the wavefunction of the ground state, we
should analyze the properties of excitations for a wide range
of energy. For this purpose, the shift property of the COCG
method, i.e. the shifted COCG method, can be a powerful
tool. The advantages of the shifted COCG method are an
efficient algorithm for solving shifted linear equations, the
ability to monitor errors during the iterative calculation and the
robustness. Thus, it is very suitable for addressing problems in
the many-electron problem area [18]. A detailed explanation is
given in section 3.

3. The Krylov subspace method

3.1. The Krylov subspace

We consider the simultaneous linear equations

[(ε + iδ)1 − Ĥ ] |x j〉 = | j〉, (9)

for a given vector | j〉, real numbers ε and δ. 1 is the unit
matrix. When Ĥ is a huge N × N matrix, the inverse of Ĥ or
[(ε+iδ)1− Ĥ] is not easily obtained or is impossible to obtain,
and the iterative method becomes a useful concept. One can
obtain an approximate eigenvector |x j〉 in a subspace spanned
by vectors {Ĥ n| j〉}:

Kν(Ĥ , | j〉) ≡ span{| j〉, Ĥ | j〉, Ĥ 2| j〉, . . . , Ĥ ν−1| j〉}. (10)

This subspace Kν(Ĥ , | j〉) is called the Krylov subspace. The
basic theorem of the Krylov subspace is the invariance of the
subspace under a scalar shift σ1;

Kν(Ĥ , | j〉) = Kν(σ1 + Ĥ , | j〉). (11)

Lanczos found a new powerful way to generate an
orthogonal basis for such a subspace when the matrix is
symmetric [19]. Hestenes and Stiefel proposed an elegant
method, known as the conjugate gradient (CG) method, for
systems that are both symmetric and positive definite [20].

3.2. Subspace diagonalization

The first method is to find eigenvectors {|w( j)
α 〉} approximated

in Kν(Ĥ , | j〉) by diagonalizing the reduced Hamiltonian
matrix

H Kν(Ĥ ,| j〉) = {〈K ( j)
n |Ĥ |K ( j)

m 〉}, (12)

where {|K ( j)
m 〉|m = 1, . . . , ν} is the orthogonalized basis set

of the Krylov subspace Kν(Ĥ , | j〉), which satisfies the three-
term recurrence relation, and is constructed by the Lanczos
process or the Gram–Schmidt process. For this subspace we
can calculate the density matrix very easily [7].

The subspace diagonalization method may be accurate
enough for several purposes for one-electron spectra of large-
scale systems and calculation of total and local densities of
states. However, the orthogonality would be broken if we
used a larger number of the subspace dimensions, for the basis
vectors satisfying the three-term recurrence relation [7, 8].
Therefore, the numerical accuracy may be limited when one
needs finer structure of spectra and we should extend the
methodology to the shifted COCG method.
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For many-electron theory, the Lanczos method is
widely used for obtaining the eigenenergy and many-
electron wavefunction of the ground state using the exact
diagonalization method. The accuracy can be greatly improved
when we use the CG method.

3.3. The shifted COCG method and ‘seed-switching’
technique

When the matrix (ε01 − Ĥ ) is real symmetric, one can use
the CG method for an iterative solution of the simultaneous
linear equation (ε01 − Ĥ)x = b. One should introduce
the infinitesimally small (but finite) imaginary number iδ
for the Green’s function and the matrix (ε0 + iδ)1 − Ĥ is
complex symmetric. Then we can use the conjugate orthogonal
conjugate gradient (COCG) method for solving the equation
{(ε0 + iδ)1 − Ĥ}x = b [8].

Since the energy parameters ε are arbitrarily given or
continuously changing over a wide energy range, one should
solve also the shifted linear equations

[(ε0 + σ + iδ)1 − Ĥ ] |x (σ )

j 〉 = | j〉, (13)

with a fixed energy (seed) ε0. The energy shift parameter
σ can even be complex. A shifted COCG method was
constructed [8, 18] in which the theorem of the collinear
residual [21] for the shifted linear systems is applied to the
COCG method. The essential property is based on the basic
invariance theorem of the Krylov subspace (equation (11))
under an energy shift ε0 + σ from ε0. Therefore, the Krylov
subspace for the equation [(ε0 + σ + iδ)1 − Ĥ ] |x (σ )

j 〉 = | j〉
can be generated from that of [(ε0 + iδ)1 − Ĥ ] |x j〉 = | j〉 for
a selected seed energy ε0. The very important fact is that this
shift procedure is a scalar linear calculation. The essential cost
for solving equation (9) should be paid only for the seed energy
ε0; the rest is a scalar linear calculation which has negligible
cost.

The choice of seed energy is not unique and sometimes
the calculations cannot be finished under required criteria.
Then one should continuously change the energy parameter
and choose a new seed energy ε + iη again. The essentially
important point is that we can continue the calculation with
a new seed energy, keeping the calculated information for the
former seed energy. This is another very important property
called ‘seed-switching’ [22, 18].

3.4. Accuracy control with the residual vector and the
robustness of the shifted COCG method

It is essentially important to know the accuracy of the
solution during the iteration procedure and we can monitor the
convergence behavior of the iterative solutions of the Krylov
subspace method.

The residual vector can be defined both in the subspace
diagonalization and in the shifted COCG method [8] as

|r (ν)

j 〉 = (ε + iδ − Ĥ )|x (ν)

j 〉 − | j〉, (14)

where |x (ν)
j 〉 is the νth iterative solution. This residual vector

can be monitored during the iterative calculation and we can

stop the iterative procedure, without fixing the dimension of the
Krylov subspace, once one can obtain the required accuracy.
The norm of the residual vector can give the upper limit of
accuracy of the Green’s function itself [18].

The shifted COCG method is numerically robust and one
can reduce the norm of the residual vector to the machine
accuracy. Therefore, the shifted COCG method may be used
to calculate accurate or fine densities of electronic states in
one-electron spectra for large-scale systems or fine excitation
spectra for many-electron problems.

4. Applications

4.1. Application to nanoscale systems

4.1.1. Formation and propagation of fractures in silicon
crystal. In this subsection, we present an application
study of our simulation: we look at fracture formation and
propagation phenomena for Si nanoscale crystal [5, 6], where
the Hamiltonian is given as a tight-binding representation [13].
The calculation was carried out by Wannier state methods with
up to 105 atoms.

In the dynamical fracture formation process on the (001)
plane, two bonds are broken and an asymmetric dimer (2 × 1
periodicity on the resultant (001) surface) is formed after
thermal motions in a time of about 0.4 ps. First, bonds are
broken successively in an atom array of the dimer bonds on the
plane along one of the [110] directions. Along the asymmetric
dimer bonds formed, the inter-atomic distance is shortened
due to the bonding character formed. The distortion energy is
accumulated and, then, other bonds along a parallel atom array,
but not the same one, are broken. This fracture propagation
(perpendicular to the direction of the asymmetric dimer bonds
formed) is governed by the accumulated distortion energy. Our
calculation can represent this mechanism of surface breaking
on the (001) planes of Si crystals [5].

We also studied for 14 nm scale Si crystals the easy-
propagating plane of fracture [6]. It is widely known that
the easy-propagating plane of fracture in Si is a (110) or
(111) plane. In the case of fracture on the (111) plane,
the (111)-(2 × 1) surface reconstruction appears (the Pandey
structure [23]) and several steps are formed. The fracture
propagation plane is explained not by the energy of established
stable surfaces but by that of ideal or transient surface structure
without reconstruction. In a MD process for larger systems
with 14 nm length, even if a fracture propagation starts on
a (001) plane, the plane of the fracture propagation changes
to a (111) or (110) plane. Figure 2 shows examples of the
simulation results.

4.1.2. Liquid carbon. Liquid carbon with 13 824 atoms
was simulated with the Krylov subspace method [10]. The
density and the temperature are set at ρ = 2.0 g cm−3 and
T = 6000 K. The time interval of a MD step is �t = 1 fs
and the subspace dimension and the number of interacting
atoms are chosen to be ν = 30 and NPR = 200, respectively.
Figure 3(a) shows the resultant pair correlation (PC) function
with comparison of the conventional eigenstate method for 216

4
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Figure 2. Silicon cleavage dynamics [6]. A 14 nm scale simulation result shows the bending of the cleavage path from an unstable (001)-like
plane into experimentally observed (111)-like and (110)-like planes. The right panel shows a process of step formation on the Si(111)-2 × 1
surface.
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Figure 3. Molecular dynamical simulation of liquid carbon from the
MD simulation, with the Krylov subspace method. (a) The pair
correlation function and (b) the electron density of states.

atoms and we should note that the two graphs are identical.
Figure 3(b) shows the electronic density of states (DOS)
of a system with 13 824 atoms, from the Green’s function,
obtained by the Krylov subspace method. The DOS calculation
was achieved with the controlling parameters at a heavier
computational cost (ν = 300 and NPR = 1000) and η =
0.05 eV. Since the present Hamiltonian includes only s and p
orbitals, the resultant DOS misses a structure in higher energy
regions. The resultant DOS shows the characteristic profile
of liquid carbon, e.g. a narrow π band appears between −5
and +5 eV as for carbon nanotubes. The π bond in the liquid
phase is imperfect and non-bonding (atomic) p states appear as
a sharp peak near the chemical potential (ε � 0.6 eV).

4.1.3. Helical multishell structure of gold nanowire. Another
application is to the process of formation of helical multishell
gold nanowires [24]. Gold nanowires obtained by the TEM
thinning process have helical multishell structures along the
original [110] axis with helicity, and the outermost shell is
a (111)-like atomic sheet [25]. The difference in number of

atoms between the outermost and the next outermost shells is
7, called the ‘magic number’, except for cases of five and seven
atoms on the outermost shell.

We proposed a two-stage model of formation of Au
nanowires where the driving force for the helicity is the atom
row slip. At the first stage, the outermost shell is dissociated
from the inner shell to rotate freely. At the second stage, an
atom row on the outermost shell slips and the (001) faces on
the rod surface transform into (111) surfaces.

We verified the above two-stage model by using MD
simulations with a tight-binding Hamiltonian [26], starting
from an ‘ideal’ nanowire of stacking (110) sections of the fcc
lattice. The calculation was carried out using the eigenstate
solver with about 80–1020 atoms. Here, we show results for
143 atoms in figure 4(a) [24] and those for larger systems
of 1020 atoms in (b). The total energy decreases almost
monotonically after 1000 MD steps (1 MD step = 1 fs). First,
the surface atoms dissociate from the inner shell and, then,
can move rather freely. From 2000 to 5000 MD steps, the
(001) sheet reconstructs into a hexagonal (111)-like surface
with an atom row slip deformation, and the helical structure
on the surface appears. The inner shell rotates as the atom
row slip occurs. Analysis of the electronic structure shows
that the mechanism is governed, in both stages, by the d
band electrons extending over the (111)-like surface, where
the center of gravity of the d band locates in the lower energy
side. The helical nanowires appear only among metals with a
wider d band, e.g. in Au and Pt but not in Ag and Cu. Helicity
is introduced by the surface reconstruction or the atom row
slip on the (001) sheet, because the triangular (111)-like sheet
is more preferable for d orbitals extending over the surface.
The d bandwidths for platinum and gold are commonly wider
than those for lighter elements, Ag and Cu, and the calculated
result explains why platinum nanowire can also be formed with
helicity.

4.2. Application to many-electron systems: the excitation
spectrum of the multi-orbital extended Hubbard Hamiltonian
on a two-dimensional square lattice

The transition metal oxides have been paid a great deal
of attention due to their various physical properties which
are drastically changed and controllable by external fields

5
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(a) (b)

Figure 4. The process of formation of the helical multishell structure in gold nanowires. Non-helical structure (left) is transformed into a
helical one (right). (a) Process of formation of an (11–4) helical multishell gold nanowire [24]. The symbol (11–4) means that the numbers of
atoms are 11 and 4 in the outer and inner shells, respectively. Atom row slip along the wire axis introduces helicity, as shown by three lines.
(b) Transformation of the structure of the longer gold nanowire of 1020 Au atoms; the resultant (15–8–1) nanowire contains several defects.
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Figure 5. The excitation spectra, electron ionization and affinity of
the doubly degenerate extended Hubbard model on an

√
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8
two-dimensional square lattice [17]. The matrix size of the reduced
subspace of the total spin Sz = 0 is 64 128 064. The excitation gap is
formed with increasing inter-site Coulomb interaction V .

or doping. Here we show an application of the shifted
COCG method to the extended Hubbard model with doubly
degenerate orbital and the inter-site Coulomb interaction on
a two-dimensional square lattice [17]. This is a model for
La 3

2
Sr 1

2
NiO4 and we used a finite unit of N = 8 sites and the

total number of electrons Ne = 3
2 N = 12.

We focused our attention on the Hilbert space of
total spin Sz = 0 and the matrix size is (16C6)

2 =
64 128 064. The difficulties for many-electron systems are
(1) the large dimension of the Hamiltonian matrix which
grows exponentially with number of atoms increasing linearly
and (2) the very small energy intervals between adjacent
eigenenergies which cause difficulty in the separation of
the respective eigenvectors. This difficulty leads to the
requirement of a fast, reliable and stable calculation algorithm
for large matrices.

Figure 5 shows the excitation spectra of electron ionization
and affinity levels, and the energy gap between these two
corresponds to the excitation gap. Normally, the Hubbard
model of a non-degenerate orbital, in the case of integer
occupation, gives the insulating gap due to the on-site
Coulomb interaction and, in contrast, in the case of non-
integer occupation, the system is a metal. Here, in the doubly
degenerate case, the charge stripe order with an insulator gap
is formed due to the inter-site Coulomb interaction V and, on
top of that, a spin stripe is formed with anisotropy of electron
hoppings [17].

The crucial point is that we should keep very high
accuracy of the computation for judging the ‘gap’, compared
with the ‘level interval’ in finite systems, and that the
iteration convergence should be controlled during the iterative
calculation. Therefore, the capabilities of convergence
(accuracy) monitoring and robustness are seriously important,
and the shifted COCG method can resolve this difficulty.

5. Conclusions

We have reviewed our methods recently developed for
performing large-scale electronic structure calculation, applied
for both one-electron theory and many-electron theory. For
large-scale systems of about the scale of tens of nm, one
can use several solver methods simultaneously as a multi-
solver method. We also explained differences between the two
theories from the viewpoint of large-scale matrix computation.
Then we presented examples of the applications for nanoscale
systems, the formation and propagation of fracture in large
silicon crystals, MD simulation for liquid carbon, and the
formation of helical multishell structure for gold nanowires,
and an example of a many-electron problem, the orbitally
degenerate extended Hubbard model. In these applications,
we stressed the importance of the hybrid scheme of multiple-
solver methods and the novel computational algorithm.
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